

SESSION 5

ECONOMIC

EVALUATIONS

OVERVIEW

- ECP vs ECM
- Types of Savings
- Project Economics
- Rules of Thumb
- Examples
- Conclusion

ECP DEFINITION

- ENERGY CONSERVATION PROJECT (ECP): A project to retrofit or replace a single energy consuming system, i.e., exit lighting, warehouse lighting, office lighting, central heating/cooling, office cooling, etc. ECPs may be combined to form an Energy Conservation Measure (ECM).
- ENERGY CONSERVATION MEASURE (ECM). An initiative to improve the energy efficiency of a facility or group of facilities. For purposes of this contract a ECM is equivalent to a contract task order which may consist of a single ECP or multiple ECPs. ECMs shall not exceed a ten-year simple payback.

ECM DEFINITION

• ENERGY CONSERVATION MEASURE (ECM). An initiative to improve the energy efficiency of a facility or group of facilities. For purposes of this contract a ECM is equivalent to a contract task order which may consist of a single ECP or multiple ECPs. ECMs shall not exceed a ten-year simple payback.

ECP vs. ECM

- ECPs can have more than 10 year pay-back
 - Common sense required
 - Life of equipment
- ECM should not exceed a 10 year simple pay-back
- ECM Combine ECPs

TYPES OF SAVINGS

- Energy
 - BTUs and Dollars
 - No BTUs but Dollars
 - BTUs but No Dollars
 - Escalation is not recommended
- Ancillary
 - 0&M
 - Capital Investments
 - Other

ENERGY DOLLAR SAVINGS

- Use data on Utility Bill
 - Consumption
 - Demand
 - Fixed Costs
- Don't use reimbursable sales rate or blended rate

ANCILLARY SAVINGS

- 0&M
 - Existing Service Contracts
 - Supplies
 - Manpower
- Capital Investment
- Other
 - Water

PROJECT ECONOMICS

- What's Included?
 - Savings Produced
 - Contractor Investment
 - Rebates/salvage value

SAVINGS PRODUCED

- Current utility rates, including demand, on/off-peak rates, etc.
- Energy consumption of existing equipment based on ACTUAL operating conditions
- O&M costs of the existing/new equipment
- Estimated annual consumption for proposed systems
- Estimated annual energy savings, net O&M costs/savings

CONTRACTOR INVESTMENT

- Capital Costs
- O&M Costs

Construction Costs

ECONOMIC ANALYSIS

- Project cost estimate:
 ESCO prepares Gov't reviews/approves
- Life cycle cost economic analysis:
 ESCO prepares Gov't reviews/approves
- Estimate energy and other cost savings: ESCO prepares-Gov't reviews/approves
- Prepare private sector financial analysis: ESCO prepares - Gov't reviews/approves
- Evaluate results of economic and financial analysis:
 ESCO prepares Gov't reviews/approves
- Government cost estimate:
 Gov't performs a "Should-cost analysis"

TOOLS TO USE

- LCCID, Developed by CERL for MILCON, ECIP projects
 - User friendly (Windows based)
 - Savings/costs identified
 - Structured input, can't be locally adjusted by user
- BLCC, Developed by DOE for all facility projects
 - Input variables can be adjusted
 - Mid-year design/construction
 - Output doesn't address all life-cycle issues

EXAMPLES

- Lighting Project (ECP)
 - Cost \$ 265,000 annual savings \$ 50,000
 - SIR: 2.55 simple payback: 5.3 yrs
- Chiller Project (ECP)
 - Cost \$695,000 annual savings \$55,000
 - SIR: 1.26 simple payback: 12.6 yrs
- Combined ECPs (ECM)
 - Cost \$960,000 annual savings \$105,000
 - SIR: 1.61 simple payback: 9.14 yrs

ECONOMICS OF ESPC

- Finding the simple payback of an ESPC
 - Costs:

 Audits and Design costs 	\$5,000
 Construction cost of materials, labor, 	7
set-up, permits	\$100,000
 Finance charge for construction loan only 	\$5,000
• Salvage value of existing equipment (if any)	-\$5,000
• Utility incentives/rebates applied to loan (if any)	<u>-\$5,000</u>
 Total investment to install ECM 	\$100,000

ECONOMICS OF ESPC (Con't)

Total investment to install ECM

\$100,000

Annual energy savings from ECM:

• Energy savings (energy and demand)

\$11,000

• O&M savings(validated)

\$1,000

Total annual energy savings

\$12,000

• For a Simple Payback:

• Cost of Investment/Total annual savings =

CONCLUSION

- This provides a sanity check with something you're familiar with.
- If it's not cost effective when using "our" dollars it will not be cost effective using ESPC
- Gives you all the numbers on one sheet, easy to assess the pros/cons.
- Not the ONLY factor in deciding on ESPC.

QUESTIONS?

